1. Wu, Y., Hong, Y., Feng, Y., Shen, D., Yap, P.-T., 2019. Mitigating Gyral Bias in Cortical Tractography via Asymmetric Fiber Orientation Distributions. Medical Image Analysis. [In press]
  2. Wu, Y., Zhang, F., Makris, N., Ning, Y., Norton, I., She, S., Peng, H., Rathi, Y., Feng, Y., Wu, H., others, 2018d. Investigation into local white matter abnormality in emotional processing and sensorimotor areas using an automatically annotated fiber clustering in major depressive disorder. NeuroImage 181, 16–29.
  3. Wu, Y., Feng, Y., Li, F., Westin, C.F., 2015. Global consistency spatial model for fiber orientation distribution estimation, in: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 1180–1183. (Oral Presentation)
  4. Wu, Y., Feng, Y., Shen, D., Yap, P.-T., 2018a. A Multi-Tissue Global Estimation Framework for Asymmetric Fiber Orientation Distributions, in: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, pp. 45–52. (Oral Presentation, Student Travel Award)
  5. Wu, Y., Feng, Y., Shen, D., Yap, P.-T., 2018b. Asymmetric Orientation Distributions Mitigate Gyral Bias in Cortical Tractography, in: OHBM, Singapore, 17-21 June, 2018.
  6. Wu, Y., Feng, Y., Shen, D., Yap, P.-T., 2018c. Penalized Geodesic Tractography for Mitigating Gyral Bias, in: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, pp. 12–19.
  7. Wu, Y., Lin, W., Shen, D., Yap, P.-T., 2019b. Improving Tractography in Baby Diffusion MRI via Asymmetric Spectrum Imaging, in: Proceedings of the International Society of Magnetic Resonance in Medicine (ISMRM).
  8. Wu, Y., Lin, W., Shen, D., Yap, P.-T., 2019c. The Effects of Fiber Response Functions on Orientation Estimation in Baby Diffusion MRI, in: OHBM, Rome, Italy, June 9-13, 2019.
  9. Wu, Y., Lin, W., Shen, D., Yap, P.-T., Consortium, U.B.C.P., others, 2019d. Asymmetry Spectrum Imaging for Baby Diffusion Tractography, in: International Conference on Information Processing in Medical Imaging. Springer, pp. 319–331. (Oral Presentation)
  10. Wu, Y., Xu, Y., Feng, Y., Gao, C., Li, F., 2014. A new model-based spherical deconvolution method for multi-fiber reconstruction, in: 2014 9th IEEE Conference on Industrial Electronics and Applications. IEEE, pp. 1456–1460.
  11. Zhang, F., Wu, Y., Norton, I., Rathi, A.J., Yogesh, Golby, O’Donnell, L.J., 2019a. White matter parcellation test-retest reproducibility of diffusion MRI tractography fiber clustering, in: Proceedings of the International Society of Magnetic Resonance in Medicine (ISMRM).
  12. Zhang, F., Wu, Y., Norton, I., Rathi, Y., Golby, A.J., O’Donnell, L.J., 2019b. Test–retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering. Human brain mapping.
  13. Zhang, F, Wu, Y., Norton, I., Rathi, Y., Makris, N., O’Donnell, L., 2018. A data-driven groupwise fiber clustering atlas for consistent white matter parcellation and anatomical tract identification of subjects across the lifespan, in: In: Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM).
  14. Zhang, Fan, Wu, Y., Norton, I., Rigolo, L., Rathi, Y., Makris, N., O’Donnell, L.J., 2018. An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. Neuroimage 179, 429–447.
  15. Feng, Y., Wu, Y., Rathi, Y., Westin, C.-F., 2015. Sparse deconvolution of higher order tensor for fiber orientation distribution estimation. Artificial intelligence in medicine 65, 229–238.
  16. Huynh, K.M., Wu, Y., Thung, K.-H., Chen, G., Lin, W., Shen, D., Yap, P.-T., 2019b. Biases of Microstructure Models in Baby Diffusion MRI, in: Proceedings of the International Society of Magnetic Resonance in Medicine (ISMRM).
  17. Huynh, K.M., Wu, Y., Thung, K.-H., Chen, G., Lin, W., Shen, D., Yap, P.-T., n.d. Dense Mapping of Microstructural Development in the Human Brain During the First Two Years of Life.
  18. Sun, P., Wu, Y., Chen, G., Wu, J., Shen, D., Yap, P.-T., 2018. Tissue Segmentation Using Sparse Non-negative Matrix Factorization of Spherical Mean Diffusion MRI Data, in: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, pp. 69–76.
  19. Cao, Z., Jin, E., Zhou, S., Wu, Y., Li, Y., Feng, Y., 2018. A Data-driven Voxel-wise White Matter Fiber Clustering Model Based on Priori Anatomical Data, in: 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, pp. 65–70.
  20. Gao, C., Feng, Y., Wu, Y., Zhang, J., Xu, T., Wang, Z., 2016. Swarm tracking approach for global probabilistic tractography with spherical deconvolution, in: 2016 35th Chinese Control Conference (CCC). IEEE, pp. 4048–4053.
  21. Huynh, K.M., Chen, G., Wu, Y., Shen, D., Yap, P.-T., 2019a. Multi-Site Harmonization of Diffusion MRI Data via Method of Moments. IEEE transactions on medical imaging.
  22. Quantifying Tissue Microstructure Non-Gaussianity in the Presence of Fiber Dispersion,105th RSNA Scientific Assembly and Annual Meeting, Chicago, USA, Dec. 1-6, 2019. [Khoi Minh Huynh, Ye Wu, Geng Chen, Kim-Han Thung, Weili Lin, Dinggang Shen*, and Pew-Thian Yap] (Oral Alternate paper)
  23. Multiscale Modeling of Intra-Regional and Inter-Regional Connectivities and Their Alterations in Major Depressive Disorder, 105th RSNA Scientific Assembly and Annual Meeting, Chicago, USA, Dec. 1-6, 2019. [Guoshi Li, Yujie Liu, Yanting Zheng, Ye Wu, Pew-Thian Yap, Shijun Qiu*, Han Zhang*, and Dinggang Shen*] (Oral paper).
  24. Huynh, K.M., Kim, J., Chen, G., Wu, Y., Shen, D., Yap, P.-T., 2018. Longitudinal Harmonization for Improving Tractography in Baby Diffusion MRI, in: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, pp. 183–191.
  25. Jin, L., Zeng, Q., He, J., Feng, Y., Zhou, S., Wu, Y., 2019. A ReliefF-SVM-based method for marking dopamine-based disease characteristics: A study on SWEDD and Parkinson’s disease. Behavioural brain research 356, 400–407.
  26. Liu, F., Feng, J., Chen, G., Wu, Y., Hong, Y., Yap, P.-T., Shen, D., 2019. DeepBundle: Fiber Bundle Parcellation with Graph Convolution Neural Networks. arXiv preprint arXiv:1906.03051.
  27. Maier-Hein, K.H., Neher, P.F., Houde, J.-C., Côté, M.-A., Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F.-C., Lin, Y.-C., Ji, Q., others, 2017. The challenge of mapping the human connectome based on diffusion tractography. Nature communications 8, 1349.
  28. Nath, V., Schilling, K., Parvathaneni, P., Hainline, A.E., Huo, Y., Blaber, J.A., Rowe, M., Rodrigues, P., Prckovska, V., Aydogan, B., others, 2018. Tractography Reproducibility Challenge with Empirical Data (TraCED): The 2017 ISMRM Diffusion Study Group Challenge. BioRxiv 484543.
  29. Xiao, C., Feng, Y., Li, Y., Zeng, Q., Zhang, J., Wu, Y., 2017. Real-time and authentic blood simulation for surgical training, in: 2017 29th Chinese Control And Decision Conference (CCDC). IEEE, pp. 6832–6837.
  30. Xu, T., Feng, Y., Wu, Y., Zeng, Q., Zhang, J., He, J., Zhuge, Q., 2017. A Novel Richardson-Lucy Model with Dictionary Basis and Spatial Regularization for Isolating Isotropic Signals. PloS one 12, e0168864.
  31. Yue, L., Hu, D., Zhang, H., Wen, J., Wu, Y., Wang, T., Shen, D., Xiao, S., 2019. Prediction of 7-year progression from subjective cognitive decline to MCI, in: OHBM, Rome, Italy, June 9-13, 2019.
  32. Zhang, J., Xu, T., Feng, Y., Wu, Y., Li, Y., He, J., Zhou, S., 2016. A self-adaptive local feature extraction based magnetic resonance imaging, in: 2016 Chinese Control and Decision Conference (CCDC). IEEE, pp. 6563–6567.
  33. Zhou, S., Jin, L., He, J., Zeng, Q., Wu, Y., Cao, Z., Feng, Y., 2018. Distributed performance of white matter properties in chess players: A DWI study using automated fiber quantification. Brain research 1700, 9–18.
  34. 冯远静, 吴烨, 张贵军, 梁荣华, 2015. 基于压缩感知高阶张量扩散磁共振稀疏成像方法. 模式识别与人工智能 28, 710–719.
  35. 吴烨, 冯远静, 李斐, 高成锋, 2015. 基于字典基函数框架的纤维方向分布模型重建. 中国生物医学工程学报 34, 297–307.
  36. 许优优, 冯远静, 牛延鹏, 吴烨, 2014. 高阶张量反卷积非负约束的纤维方向分布估计方法. 系统科学与数学 34, 805–814.